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Waveguides Containing Moving Dispersive Media

HARRY GRUENBERG, SENIOR

Abstract-Perturbation formulas are derived for the changes in the

dispersion curves and phase velocity for the modes in an arbitrary com-

posite wavegaide structnre containing dispersive media in relative motion.

The formulas are also valid when the media are fluids with arbitrary

velocity distributions. It is shown that the relativistic transformation laws

for the frequency and wave veetor of uniform plane waves are also valid

for wavegnide modes provided that all moving media that make np the

guide move with the same velocity. There are also ditlicolties when the

moving media are dispersive. In general, one most therefore obtain the

dispersion relation direetly from the field equations or from the perturba-

tion formulas. An example involving a simple surface wave along the

interface of a moving plasma and a dielectric is worked out by both

methods. As an interesting side result, it is found that plane waves in an

unbounded isotropic plasma have phase velocities independent of the mo-

tion of the plasma.

I. INTRODUCTION

w

HEN A PLANE wave propagates in a nondissipa-

tive nondispersive isotropic medium in the direc-

tion of motion of the medium, the frequency and

propagation constant in the proper frame of the medium

(2’) are related to the corresponding quantities in the ob-

server’s frame (z) by the relativistic formulas

m’ = T(U – lw) (1)

and

k’ = -y(k – pw/c) . (2)

Here v is the velocity of the medium with respect to the ob-

server’s frame, @= v/c and Y =(1 —va/ca)–l@. The frequency

of the wave, as measured in the two frames, is given by o

and u’, respectively, and k and k’ are the corresponding

propagation constants.

These equations apply not only to uniform plane waves in

a single medium, but with certain restrictions also to non-

uniform waves in composite cylindrical structures where the

field components vary typically as 4(x, y)e~(”’–~’). All wave-

guide modes or surface waves fall into this category provided

that the medium or the media that make up the guiding

structure are nondispersive and move together with a single

uniform velocity v (hereafter referred to as comoving wave-

guide structures). From these restrictions we can, of course,

exclude any free-space portions of the guide cross section

and any metal walls. The free-space portions can always be

considered as moving with velocity v and conducting walls

do not contain any fields. If the dispersion relations, i.e. the
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relation between k’ and LO’is known in the proper frame, it

can be computed in the observer’s frame from (1) and (2).

The reason for the more general validity of (1) and (2)

can be seen from their derivation which makes use only of

the principle of the invariance of phase and the relativistic

transformations of space and time. The equations clearly

cannot apply to composite waveguides, containing two or

more media (other than free space and conducting walls)

moving with different velocities, nor to a single medium

with a nonuniform velocity distribution. In this case there is

no unique proper frame to which the equations could be

applied.

When (1) and (2) cannot be applied, it is necessary to

derive the dispersion relation in the observer’s frame from

first principles, starting from Maxwell’s equations and the

constitutive relations for moving media. In this paper, per-

turbation formulas are derived which give the change in the

dispersion curve for any mode in a composite guide when

the different dispersive media making up the guide are in

relative motion. The perturbation formulas assume, of

course, that the dispersion curve is known for the case where

all media are at rest with respect to the observer.

The results are then applied to a simple example involving

a TM surface wave along the interface of a semi-infinite

moving plasma and a stationary dielectric. In this case, the

field equations can be solved directly, thereby allowing a

comparison with the perturbation theory results.

II. ADDITION FORMULAS FOR PHASE VELOCITY

It will be necessary to review some well-known results for

uniform plane waves in nondissipative isotropic media.

These results are, however, stated in a form that is applicable

also to nonuniform waves of the type indicated in comoving

composite waveguide structures. The results are then special-

ized to plane waves in media of infinite extent and, in par-

ticular, to a moving isotropic plasma.

We shall restrict ourselves in this section to a single

medium moving with a uniform velocity v or to a comoving
composite waveguide structure as defined in the introduc-

tion. If we consider plane waves (uniform or nonuniform)

propagating in the direction of v, the relation between the

phase velocities measured in the two reference frames,

u = (0//%,

u’ = Co’/k’ (3)

is easily obtained from (1) and (2). It is, in fact, the relativis-

tic addition formula for velocities

J+v
u=

1 + u’v/c2 “ (4)
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In most practical problems of this type, v is small enough so

that terms of order (v/c)2 can be neglected. In that case, (4)

becomes

?J = ‘u’ + V[l – (u’/c)’]. (5)

The last term is normally not negligible for fast waves for

which u’ is comparable with c. We know, however, that in

certain types of composite waveguides and structures that

support guided waves, slow waves can be excited for which

(u’/c)2<<l. In that limit (5) becomes approximately

UGu’+v (6)

and (1) and (2) may be replaced by

and

When we are dealing with uniform plane waves in an infi-

nite medium, the phase velocity in the proper frame is given

by

u’ = c/nf = C/ V’K’Km’ n’ = n(u’) (9)

where n‘ is the refraction index and K’ and Km’ are the electric

and the magnetic permittivities measured in the proper

frame at the frequency w’. If the medium is nondispersive,

i.e., if n’ is independent of the frequency, we can replace n’

by n, the refractive index measured at frequency OJ.In this

case (5) reduces to the Fresnel relation

() 1
u=uo+v l——

n2
(10)

where the proper phase velocity u’ at frequency w has been

denoted by u~. It is defined by

U. = c/n n = n(a). (11)

For a nondispersive medium we have, of course, n’= n and

u’=%.

For a uniform plane wave in a dispersive medium, the

relation becomes a little more complex since we want to

write the equation in terms of the refractive index n and the
proper phase velocity UOat the frequency o. Using a Taylor

expansion we can write

dn w dn

U dw ’12)n’=n(u’)=n(ti —ku)= n-kv-=n-— —
da

and

“=”0(’+%9 (13)

provided (oti/un)(dn/do)<<l. When this is substituted in (4)

and terms of order (v/c)2 are dropped, one obtains the well-

known result

( 1 w dn

)
U= U(I+V l—; +--~

( 1 w dnz
=Uo+v l—$+%x

)
(14)

which has been amply verified by experiment. III

If the plane wave moves in a direction making an angle a

with the direction v, it is not difficult to show that the last

equation should be replaced by

( 1 ~ dn2

)

U=”(I+V l——+—— Cosa.

n’ 2nZ dco
(15)

An isotropic plasma is a dispersive medium with

Km = 1,

nz=~ (16)

if we neglect losses near the plasma resonance frequency

Wp. In a plasma of infinite extent, plane waves are possible

only when the frequency is higher than the plasma frequency

so that K> O. It is interesting to find that in this case the

Fresnel drag coefficient [1 –(1/n2)] is exactly cancelled by

the dispersion term (~/n)(dn/dw), This means that the phase

velocity of plane waves in any inertial frame is independent

of the magnitude and direction of the velocity of the plasma.

We have simply

u = ‘u@= c/v’;. (17)

This is, in fact, true for arbitrary velocities as can be seen

by substituting (16) with o replaced by cd = 7(w– kv), in (4)

and solving for u.

Since waveguide modes can be synthesized from plane

waves making some angle with the direction of propagation,

the same result for the ordinary waveguide modes in guides

filled with a moving plasma in view of (15) can be expected.

The preceding results cannot be expected to hold in more

complex guide structures, especially those containing two or

more media in relative motion. Since measurements have

recently been carried out to determine the drift velocity of a

plasma from the experimental dispersion curves, [z] it is

worthwhile to consider this problem in more detail.

III. PERTURBATION THEORY FOR WAVEC;UIDES

CONTAINING MOVING MEDIA

Let us consider a fairly general problem involving a com-

posite waveguide structure. The total cross section S is sub-

divided into partial cross sections S, (i= 1, 2, 3, . . . ). Each

of these partial sections may have a different dielectric con-

stant and permeability, and may move with a different veloc-

ity parallel to the axis of the guide. Both dielectric constant

and permeability may be functions of frequency. The veloc-

ity distribution need not be uniform in each section, so that

fluid as well as rigid media are admissible. In this section
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two perturbation formulas are derived, one giving the per-

turbation in the propagation constant for a fixed frequency,

the other the perturbation in the frequency for a fixed propa-

gation constant.

Propagation Constant Perturbation

For a fixed frequency W, the unperturbed and perturbed

problems correspond to propagation constants k~ and k, re-

spectively. The fields will be assumed to vary as ejf”o +~oz)

and e~@~-~z) in the two cases. The unperturbed fields then

satisfy

Vt X E. – j%oez X EO = – jLOOI.MO (18)

Vt X Ho – jitOez X HO = jho c EO (19)

while the perturbed fields satisfy the equations, 131correct to

the first order in the velocity

V, x E – jlcez x E – jboA X E = – jwoLL’H (20)

and

V~XH–jke. XH–j~OAXH=jaOe ‘E (21)
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When these two expressions are added and integrated over

the guide cross section, a number of terms cancel. The di-

vergence terms can be changed to contour integrals which

vanish on metallic

surface waves

(k – I@) J (I3O x
s

P

boundari& for guides

H* + E* X HO). dS

or at infinity for

--@ol (Eox H*+ E* XHO).Adi5’—

J,s

— Q@ J( )v ~~EO.E*+~uHO.* dS. (27)

We can now set the perturbed fields equal to the unperturbed

fields, substitute for A and solve for Ak = k–ko. If we also

note that the component of the Poynting vector in the z

direction is given by

No=* Re(e,. EOXHO*) =~(EOXH*+EO*XHO) .e, (28)

the final result can be written in the form

J{V 4@c – #IJ6~)N~ + kO[(&/L?@) EO . Eo* + (dJL/c%_o)Ho . HO*] } dS
s

Ak=–uo

4 siVOdt$
s

(29)

where e, is a unit vector in the z direction and

A= (p’~’ – po~o)v = (K’Km’ – l)v/c2. (22)

The primes on c and p indicate that these quantities are to

be given at the frequency u’ in the proper frame of the par-

ticular medium. If we use a Taylor expansion about the fre-

quency CJoas in (12), we get

V, XE–jke. XE–juOAx E

. – jco(y – kv@/&o)H (23)

Note that the integrations in the numerator have to be car-

ried out only over those subsections S~ for which v# O. Fur-

thermore ~ and c may differ from section to section so that

the numerator really consists of a sum of integrals.

If the waveguide contains only a single, nondispersive

medium which has an arbitrary velocity distribution, we

have

( viVodS
Js

Ak=– @o(wlEl — L40eo) ~ (30)

and

V,x H–jkezx H–jti~x H

= ju(e – kv&/h) E. (24) If all media are nondispersive

Since we are neglecting terms of order (v/c)2, the A terms
velocity, (29) reduces to

may be written with c and p replacing ~t and pt.

When (18) and the complex conjugate of (24) are multi- S(pe
plied by H* and EO, respectively, and the resultant expressions s

A?+= ‘LO.V—

J-NOdi3
s

and move with the same

– ~oco)NodS

are subtracted, one obtains

s

,--,

NOdS
Vi. (EoxH*)+j(k–lco) ez. EOXH* = –jw&. EOXH* s

‘jWOWHO. H*+jWO(E– hWr%/dW) Eo - E*. (25)
When there is only one nondispersive medium filling the

Similarly, (19) and (23) lead to entire cross section S and moving with uniform velocity,

V~. (E*xHo)+j(k–ko)e,. E*XHO= –jw~. E*XHO
then[ll

+jWO@– h,@.L/dw)Ho oH* ‘jc006E0 oE*. (26) Alc = – WOV(&6 – ~060) = – WOA.
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Frequency Perturbation

If we want to find the perturbation in frequency for a

fixed propagation constant ko, we follow a somewhat similar

procedure. The unperturbed equations, (18) and (19) remain

unchanged, but the perturbed equations must be modified.

We must replace k by ko, and OJOby m on the left-hand sides

of (20) and (21). The quantities C’ and ~’ on the right-hand

side are now functions of CO’=w—kov, rather than ao— kv.

Hence, if Am= w –u,, c= C(COJ and ~= p(coJ are defined

V, XE–jkoe.XE -@AXE

– – ju{~ + (Am – kv)~w/ilw}H—

and

V, XH–jkoe, XH–jaAXH

= jco{ c + (Au – ku)&/a~} E.

Following the same procedure as before, it is found

Vt. (E. x H*) = – jwA. E. x H* – jWoYHo H*

+jco{c + (Au – kv)~c/&o}Eo. E*

Vt. (E* x Ho) = – jwA. E* x Ho — jaocEo. E*

+ ju{~ + (Au – kv)@/&o}H,. H*.

(32)

(33)

that

(34)

(35)

Adding and integrating over the cross section, setting the

perturbed fields equal to the unperturbed fields leads to

m

k

I

,~
w w

Fig. 1. Perturbed and unperturbed dispersion curves.

If we substitute from (30) and (38), we find that (39) is

satisfied provided

s/.teNod/S’
s lcll 1

. =—.

r

(40)

UodS ‘0 ‘0
J

That this is generally true for a composite waveguide can be

shown from (18) and (19). (See Appendix.)

J{(V 4 w – P060)N0 + ko[(&/&J)Eo o Eo* + (@J/d@)~O .~o*] ~ch’

Aw s
.

h

(36)
@o

4U0 + tio[(&/dti) EO . Eo* + (@J/13co)Ho “ Ho*] ] dS
Js

where U,] is the volume density of field energy given by

UO = ~(eEo . Eo* + /.LH, . H,*). (37)

If all media are nondispersive and move with the same

velocity, (36) reduces to

s
V (LM – poeo)Nodi3

Au s
—— (38)

S
./

UodS
Is

It is not too difficult to show that (30) and (38) are con-

sistent with (1) and (2). This can be demonstrated in con-

nection with Fig. 1 which shows linearized sections of the

dispersion curves for v= O and for v#O. For small v/c, the

points A, B, and C, obtained from (30), (38), and (1) and

(2), respectively, must lie on the same straight line. From the

figure, the condition can clearly be written in the form

kov – AU AU
.-— . (39)

Cdov/c2 Ak

——

IV. SLOW WAVES ALONG THE INTERFACE OF A SEMI-

lNFINITE PLASMA

As an example of the application of the formulas of

Section IV we shall choose the problem of a surface wave

along the interface of a moving semi-infinite plasma and a

dielectric. This problem has some bearing on recent experi-

ments. [21

It is well known151 that along the interface of a semi-infinite

plasma and free space, a slow surface wave can propagate

which decays exponentially away from the interface. If the

plasma has a drift velocity v parallel to the interface, the

solution is unaltered in the proper frame of the plasma. The

solution in the observer’s frame can then be obtained simply

by a Lorentz transformation.

When the free space above the plasma is replaced by a

dielectric which is not moving with the plasma, the situation

is not quite as simple. We must use the constitutive relations

for a moving medium whether we work in the proper frame

of the plasma or that of the dielectric. Let us choose the

proper frame of the dielectric as our reference frame. The

interface is taken as the z-y plane and the plasma drifts in

the z direction with velocity v (see Fig. 2). Subscripts 1 and 2
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Medium 1

Dtelect ri c

E,=I$EO

I
surface wave

/
u“

/
,Med~m 2

Isotropic Plasma
/

/

/
e’.~,o

/

Fig. 2. Geometry of problem.

will refer to the dielectric and plasma region, respectively.

We shall first obtain a direct solution of the field equations

and then compare the results with those obtained from the

perturbation formulas.

In region 2, we must supplement the source-free Maxwell

equations by the first-order constitutive relations[sl (terms

of vz/cz or A2 are neglected here and later on):

Dz = E,EZ + A X Ha,

Bz = poH2 – A X Ez. (41)

If fields vectors are assumed proportional to

~cYzz+ j( w t–kz) (42)

Maxwell’s equations separate into two independent sets,

corresponding to a TM and a TE wave, respectively,

Both sets will have a nontrivial solution only if

(ii + At_.J)2= Q,2 + K,(w/C)2 Ka = E2~E0. (44)

In the dielectric, we will assume fields of the form

~–aIz+j( @t–kz) (45)

We get a set of equations of the form of (43) except that the

subscripts on the fields are now 1 instead of 2 and az is re-

placed by – al. We have a nontrivial solution if

k’ = al’ + K,(LJ/C)’ KI = 61/60. (46)

The continuity requirements on the tangential components of
E and H lead to the relations[sl

c22= – (KJKJCY1 for the TM wave (47)

and

cw = – (1.n/I.J1)al for the TE wave. (48)

These equations can clearly not be satisfied unless one of the

dielectric constants or one of the permeabilities is negative.

For a plasma, w will be negative for frequencies below the

plasma frequency, so that a slow TM surface wave is pos-

sible. For ferrites a TE wave may be possible in certain fre-

quency ranges.

For our drifting plasma, we can combine (44), (46), (22),

and (47) to obtain the dispersion relation

k2(K22 — K12) — (2ihAf2f/C2)K12(KZ – 1)

– (W/C) 2KIKz(Ki – KI) = O. (4!3)

It will be convenient in what follows to introduce the dimen-

sionless variables defined by

/3 = v/c,

x = Cl/up,

Y = kc/wP, (50)

In terms of these symbols, (49) can be written in the form

(KZ’–K12) Y2– 2@X17K12(KZ– 1) –X2KIK2(K2– KJ = O. (51)

The dielectric constant of the plasma is given by (16), but

it must be evaluated at the frequency w‘ = u —ku. Hence

K2 = 1 — (X — fly)-z. (52)

For v= O @= O) we get the well-known solution 151

(kc/coP) 2 = Yo2 = Xo2 ~
K2 + K1

= xc?
MI(1 — Xlf)

(53)
1 – (1 + KI)X02 “

A real solution is obtained only at frequencies below the

cutoff frequency given by

XiIC = (1 + KI)–1/2

or

d% = (1 + K,)-’/2. (54)

We are interested in how the dispersion curve in (53) is

changed when ~ has a finite positive or negative value. This

is most conveniently expressed in terms of the shift of the

dispersion curve AX in the X-Y plane for a given Y. If we

substitute (52) in (51), multiply through by (X—p Y)4 and

then neglect terms of order @2and higher, the dispersion

relation becomes

F(X, Y, ,8) = Y2[1 – 2X’ – (K12 – 1)X’]

— KIX2[1 — (2 — K1)X2 — (K1 — 1)X1]

+ 4~XY{ Y2[1 + (K,2 – 1)X’]

+ X2(1 – X2)KI(KI – 1)] = O. (55)

Equation (53) gives a zero-order solution to (55). The first-

order change in X for a fixed Y is given by Newton’s rule

~(x, y, @
AX=– (56)

dF/dX

with

Y = Yo.
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6/

Semi-Infinite isotropic plasma

%1.4 P[asma velocity p=lo-s I
I

Plasma travellng along +ve z axis

slope -P

‘P

~

0.41 0,42 0.43 0,44

Fig. 3. Dispersion curves for TM surface waves on semi-infinite isotropic plasma.

After a considerable amount of algebra, dropping terms of

order IY, we get

AX Au (1 + K,) X,z(l – X,’) . (57)

~Yll = lCIJV = 1 – ~.x,’ + (KI + 1)X04

This equation gives the change in a required to maintain the

same propagation constant, when the drift velocity of the

plasma changes from zero to v.

The ratio given by (57) tends to unity as X approaches the

cutoff value Xc or, equivalently, as a tends to w. This means

that the o – k curve has the asymptote a= ti.+kv. This is

shown for zero, positive and negative values of v in Fig. 3

for KI=4.

Equation (37) is plotted in Fig. 4 with KI as a parameter.

The frequency is normalized with respect to the cutoff fre-

quency W. It is seen that AOJ approximates kU only near

cutoff when the phase velocity is very small. At lower fre-

quencies Au/kv tends to zero very rapidly as the phase

velocity approaches the velocity of light.

It is a little more difficult to carry out the calculation for

A Y for a fixed X since this difference becomes very large

near cutoff. Away from cutoff, i.e., for low frequencies, a

similar procedure can be used to obtain

F
AY=– —

dF/dy
(58)

with

Y = Y,.

The difference in phase velocity with and without plasma

drift is then given by

1,0 - J&
ck. ~

0,s

0,6 -

0,4 -

0,2 -

0 *

o 02 04 0,6 OS 10

Fig. 4. Frequency shift versus normalized frequency.

Lo CJJ uA~ XOAY
— o (59)

‘–uO=k+Alc-%E– k,’ ‘–v —~Yo2

After some algebra we obtain

2KIX132

‘U= ZL, +’V

1 – 2x,’ – (K12– 1)X7 “
(60)

Much below cutoff, when the phase velocity is high, the drag

coefficient multiplying v is negligible and u~uo for all

practical purposes.

The results given in (57) and (60) can also be obtained

from the perturbation formulas (29) and (36), If we set

PZ=PO and ez= CO(1–~p2/w’) we get

Ail

()

UP 2
—. ——

vu, @o

0

J{ (ko/@o) 60’?30oE,* — 2N,/c2 ) d$
—m

. — (61)p.
2 J Nodx

—m
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and

VAU

– ()

2

=22
@o Wo

o

f{ (ko/coo) COEO“ EO* — 2No/C2] dx

“ J%: (w,/uo)2,eoEo.Eo* +pdo.Ho*}dz” ’62)
—m

When one substitutes for the unperturbed fields EO and Ho,

the preceding expressions reduee to (57) and (60). The un-

perturbed fields can be obtained from Daly I’] or from (43)

by setting A= O.

V. DISCUSSION

It was shown that the relativistic transformation formulas

(1) and (2) for the frequency and wave vector can be used

for nonuniform plane waves in composite waveguides pro-

vided that all moving media making up the guide are non-

dispersive and move with the same velocity. When these

conditions are not fulfilled one must generally obtain the

dispersion relation for the composite guide directly from

Maxwell’s equations and the constitutive relations. If the

dispersion relation is known when all media are stationary,

perturbation formulas may be used to obtain the correspond-

ing relation when all or some of the media making up the

guide are moving and dispersive.

In the experiments reported in Kerzar and Weisglas, [z]

a drifting plasma was enclosed in a glass tube inside a cylin-

drical waveguide. In the interpretation of the experiments,

the authors set AOJequal to ku for all frequencies. This does

not appear to be justified from the above argument. How-

ever, since the waves are much slower (k k larger) for the

cylindrical waveguide structure of the experiments than for

the simple structure considered here, it is conceivable that

Ati/kv may not be too different from unity even at the

lower frequencies. In any case the frequency shift for the

circular-symmetric mode is too small at these lower fre-

quencies to permit a precise comparison with theory. It

would be interesting to repeat these experiments for higher

drift velocities.

APPENDIX

When the conjugate of (18) is premultiplied by ce.. EoX,

use is made of some vector identities and the terms rear-

ranged, one obtains after integration over the guide cross

section

J{t e.. Eo X (Vt X Eo*) — jkoE,E,*}dS
s

= jwo

s
pcEo X Ho* .dS — jko seEo . Eo*dS. (63)

s s

Similarly, one obtains from (19)

f{ p e,. Ho X (V1 X HO*) – j7coHJlz*] dS
s

= jwo speEo* X Ho. dS – jko spHo.Ho*dS. (64)
s

When these equations are added, the right-hand side is

equivalent to

{s4j Wo ~eNcdS – ko s}UodS .
s s

In order to prove (40) we must show that the left-hand sides

of (63) and (64) vanish identically.

From vector identities, or by expansion in rectangular

components, one can show that

e.. Eo X (V~ X Eo*) = — Eo. VJ7.*

= E.*v, . Eo – V,. (EzEo)

= jk&.E=* — Vt. (E.Eo).

The last identity follows from V cEO = O which implies

V,. Eo–jkoE. = O. If this result is substituted into (63), the

left-hand side becomes

—sevt .E, EodS.
s

Since e is a constant in each subsection S; of S, it can be

taken inside the divergence sign. The integral can therefore

be converted into a contour integral which vanishes over a

metallic boundary or at infinity. A completely analogous

procedure can be used to show that the left-hand side of (64)

is also zero.
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