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Waveguides Containing Moving Dispersive Media

HARRY GRUENBERG, SENIOR MEMBER, IEEE, AND PETER DALY

Abstract—Perturbation formulas are derived for the changes in the
dispersion curves and phase velocity for the modes in an arbitrary com-
posite waveguide structure containing dispersive media in relative motion,
The formulas are also valid when the media are fluids with arbitrary
velocity distributions. It is shown that the relativistic transformation laws
for the frequency and wave vector of uniform plane waves are also valid
for waveguide modes provided that all moving media that make up the
guide move with the same velocity. There are also difficulties when the
moving media are dispersive. In general, one must therefore obtain the
dispersion relation directly from the field equations or from the perturba-
tion formulas. An example involving a simple surface wave along the
interface of a moving plasma and a dielectric is worked out by both
methods. As an interesting side result, it is found that plane waves in an
unbounded isotropic plasma have phase velocities independent of the mo-
tion of the plasma.

I. INTRODUCTION

HEN A PLANE wave propagates in a nondissipa-
&;&/ tive nondispersive isotropic medium in the direc-

tion of motion of the medium, the frequency and
propagation constant in the proper frame of the medium
(Z") are related to the corresponding quantities in the ob-
server’s frame (2) by the relativistic formulas

o = y(w — kv) 1)
and
K = y(k — Buw/c). 2)

Here v is the velocity of the medium with respect to the ob-
server’s frame, 8=v/c and v=(1—v?/c®)~*2 The frequency
of the wave, as measured in the two frames, is given by w
and ', respectively, and k and k’ are the corresponding
propagation constants.

These equations apply not only to uniform plane waves in
a single medium, but with certain restrictions also to non-
uniform waves in composite cylindrical structures where the
field components vary typically as y(x, y)ei@=%a, All wave-
guide modes or surface waves fall into this category provided
that the medium or the media that make up the guiding
structure are nondispersive and move together with a single
uniform velocity v (hereafter referred to as comoving wave-
guide structures). From these restrictions we can, of course,
exclude any free-space portions of the guide cross section
and any metal walls. The free-space portions can always be
considered as moving with. velocity v and conducting walls
do not contain any fields. If the dispersion relations, i.e. the
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relation between k’ and «’ is known in the proper frame, it
can be computed in the observer’s frame from (1) and (2).

The reason for the more general validity of (1) and (2)
can be seen from their derivation which makes use only of
the principle of the invariance of phase and the relativistic
transformations of space and time. The equations clearly
cannot apply to composite waveguides, containing two or
more media (other than free space and conducting walls)
moving with different velocities, nor to a single medium
with a nonuniform velocity distribution. In this case there is
no unique proper frame to which the equations could be
applied.

When (1) and (2) cannot be applied, it is necessary to
derive the dispersion relation in the observer’s frame from
first principles, starting from Maxwell’s equations and the
constitutive relations for moving media. In this paper, per-
turbation formulas are derived which give the change in the
dispersion curve for any mode in a composite guide when
the different dispersive media making up the guide are in
relative motion. The perturbation formulas assume, of
course, that the dispersion curve is known for the case where
all media are at rest with respect to the observer.

The results are then applied to a simple example involving
a TM surface wave along the interface of a semi-infinite
moving plasma and a stationary dielectric. In this case, the
field equations can be solved directly, thereby allowing a
comparison with the perturbation theory results.

1I. ApprrioNn FORMULAS FOR PHASE VELOCITY

It will be necessary to review some well-known results for
uniform plane waves in nondissipative isotropic media.
These results are, however, stated in a form that is applicable
also to nonuniform waves of the type indicated in comoving
composite waveguide structures, The results are then special-
ized to plane waves in media of infinite extent and, in par-
ticular, to a moving isotropic plasma.

We shall restrict ourselves in this section to a single
medium moving with a uniform velocity v or to a comoving
composite waveguide structure as defined in the introduc-
tion. If we consider plane waves (uniform or nonuniform)
propagating in the direction of v, the relation between the
phase velocities measured in the two reference frames,

u = w/k,

w =o' /K 3
is easily obtained from (1) and (2). It is, in fact, the relativis-
tic addition formula for velocities

w4+ v

_ 4
v 14+ uwv/c? @)
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In most practical problems of this type, v is small enough so
that terms of order (v/c)? can be neglected. In that case, (4)
becomes

uw=1u + o[l — @/c)]. (5)

The last term is normally not negligible for fast waves for
which ' is comparable with ¢. We know, however, that in
certain types of composite waveguides and structures that
support guided waves, slow waves can be excited for which
(W' /)« 1. In that limit (5) becomes approximately

uqy + v 6)
and (1) and (2) may be replaced by
o =w—Ff @)
and
¥ =k ®)

When we are dealing with uniform plane waves in an infi-
nite medium, the phase velocity in the proper frame is given
by

w =c¢/n = ¢/Vk'k n' = n(w') 9)
where n’ is the refraction index and «’ and «,,” are the electric
and the magnetic permittivities measured in the proper
frame at the frequency o’. If the medium is nondispersive,
i.e., if n’ is independent of the frequency, we can replace n’

by n, the refractive index measured at frequency w. In this
case (5) reduces to the Fresnel relation

1
1¢=uo—|—v<1——>
n2

where the proper phase velocity u” at frequency « has been
denoted by u,. It is defined by

(10)

(11)

For a nondispersive medium we have, of course, n’'=n and
u' =u,.

For a uniform plane wave in a dispersive medium, the
relation becomes a little more complex since we want to
write the equation in terms of the refractive index » and the
proper phase velocity u, at the frequency w. Using a Taylor
expansion we can write

ug = ¢/n n = n{w).

dan vw dn
n=n) =nlo—k)=n—k—=n——— (12)
dw U dw
and
v dn
U’ = uo <1 +— —> (13)
un dow

provided (vo/un)(dn/dw)<<1. When this is substituted in (4)
and terms of order (v/c)? are dropped, one obtains the well-
known result
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n <1 1 n w dn)
=u M{l—-—4——
“ ¢ n? n dw
_ n <1 1 n w dn2> (14)
Ty n?  2n? dow

which has been amply verified by experiment.!!!

If the plane wave moves in a direction making an angle a
with the direction v, it is not difficult to show that the last
equation should be replaced by

+ <1 S dnz) (15)
w=u +v{l——-+——)cos
’ n?  2n? dw *
An isotropic plasma is a dispersive medium with
2
k=1— “r ’
(.02
km = 1,
nt =« (16)

if we neglect losses near the plasma resonance frequency
wp. In a plasma of infinite extent, planc waves are possible
only when the frequency is higher than the plasma frequency
so that «>0. It is interesting to find that in this case the
Fresnel drag coefficient [1—(1/n?)] is exactly cancelled by
the dispersion term (w/n)(dn/dw). This means that the phase
velocity of plane waves in any inertial frame is independent
of the magnitude and direction of the velocity of the plasma.
We have simply

u = up = ¢/vx.

This is, in fact, true for arbitrary velocities as can be seen
by substituting (16) with » replaced by o’=v(w—kv), in (4)
and solving for u.

Since waveguide modes can be synthesized from plane
waves making some angle with the direction of propagation,
the same result for the ordinary waveguide modes in guides
filled with a moving plasma in view of (15) can be expected.
The preceding results cannot be expected to hold in more
complex guide structures, especially those containing two or
more media in relative motion. Since measurements have
recently been carried out to determine the drift velocity of a
plasma from the experimental dispersion curves,[? it is
worthwhile to consider this problem in more detail.

(17)

III. PERTURBATION THEORY FOR WAVEGUIDES
CONTAINING MOVING MEDIA

Let us consider a fairly general problem involving a com-
posite waveguide structure. The total cross section S is sub-
divided into partial cross sections S, (i=1, 2, 3, - - - ). Each
of these partial sections may have a different dielectric con-
stant and permeability, and may move with a different veloc-
ity parallel to the axis of the guide. Both dielectric constant
and permeability may be functions of frequency. The veloc-
ity distribution need not be uniform in each section, so that
fluid as well as rigid media are admissible. In this section
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two perturbation formulas are derived, one giving the per-
turbation in the propagation constant for a fixed frequency,
the other the perturbation in the frequency for a fixed propa-
gation constant.

Propagation Constant Perturbation

For a fixed frequency wo the unperturbed and perturbed
problems correspond to propagation constants k, and k, re-
spectively. The fields will be assumed to vary as ef(w¢ %2
and e/ in the two cases. The unperturbed fields then
satisfy

Vi X Ey — jhoe: X Ey = — jwouHy (18)

(19)

while the perturbed fields satisfy the equations,!®! correct to
the first order in the velocity

Ve X E — jke, X E — jwoA X E=— jO)oM,H (20)

Vt X H() —jkoez X Ho = jwoe Eo

and
Vi X H — jke, X H — jogA X H = jwye'E (21)
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When these two expressions are added and integrated over
the guide cross section, a number of terms cancel. The di-
vergence terms can be changed to contour integrals which
vanish on metallic boundaries for guides or at infinity for
surface waves

" — ko)f (Eo X H* + E* X Hy)-dS
S
__ wof(onH*+ E* X Hy)-AdS
S
de du
Jw dw

We can now set the perturbed fields equal to the unperturbed
fields, substitute for A and solve for Ak=k—k,. If we also
note that the component of the Poynting vector in the z
direction is given by

N0=% Re(ez-EoXHo*)=i(EoXH*—}—E0*XHo)~e2 (28)
the final result can be written in the form
f U{4:([.L€ — uoeg) Vg kg[(ae/aw)Eo-Eo* + (au/aw)Ho-Ho*]}dS
8
(29)

Ak =

— Wo

where e, is a unit vector in the z direction and

A= (y'd — weg)v = () — Lv/c2 (22)
The primes on e and p indicate that these quantities are to
be given at the frequency «’ in the proper frame of the par-
ticular medium. If we use a Taylor expansion about the fre-
quency wg as in (12), we get
V: X E — jke, X E — jwA X E

= — jo(u — kvdu/0w)H (23)
and
Ve X H — jke, X H — juosA X H

= jw(e — kvde/dw)E. (24)

Since we are neglecting terms of order (v/c)?, the A terms
may be written with e and p replacing ¢’ and p’.

When (18) and the complex conjugate of (24) are multi-
plied by H* and E,, respectively, and the resultant expressions
are subtracted, one obtains

Vi (EoXH¥)4jk—ko)e.- Eg X H* = —juoA - Eg X H*

—jwouHy H*+jwo(e—kvde/dw) Eq- E*. (25)
Similarly, (19) and (23) lead to
Vi (E*X Ho)+j(k—ko)e,- E* X Hy= — jwoA - E* X Hy
+jwo(u—kvdu/dw)Hy H* — jwoeEy+ E*.  (26)

4 f NodS
8

Note that the integrations in the numerator have to be car-
ried out only over those subsections S; for which v>£0. Fur-
thermore p and ¢ may differ from section to section so that
the numerator really consists of a sum of integrals.

If the waveguide contains only a single, nondispersive
medium which has an arbitrary velocity distribution, we

have
f oV odS
S

f NS

S

Ak = - wg(/.blél - poéo) (30)

If all media are nondispersive and move with the same
velocity, (29) reduces to

f (;.LE - ,uoeo)NodS
8

f NodS
8

When there is only one nondispersive medium filling the
entire cross section S and moving with uniform velocity,
thenH!

Ak = — wol

(31)

Ak = — ww(ue — poco) = — woA.
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Frequency Perturbation

If we want to find the perturbation in frequency for a
fixed propagation constant ko, we follow a somewhat similar
procedure. The unperturbed equations, (18) and (19) remain
unchanged, but the perturbed equations must be modified.
We must replace k by ko, and wo by w on the left-hand sides
of (20) and (21). The quantities ¢’ and x’ on the right-hand
side are now functions of w'=w—kw, rather than wy—ko.
Hence, if Aw=w—wo, e= e{wo) and u= u(wy) are defined

Vi X E — jkoe. X E — juA X E
= — joip + (Aw — k)ap/de} H (32)
and
Ve X H — jkoe; X H — joA X H
= jole + (Aw — kv)de/du} E.  (33)
Following the same procedure as before, it is found that
Vi (Ey X H*) = — joA-Ey X H* — jowH,- H*

+ jole + (Aw — kv)de/dw} Eo- EX  (34)

V;'(E* X Ho) = = ij'E* X H() —_ jwero‘E*
—I—-jw{p. + (Aw — kv)(‘)u/aw}Ho-H*. (35)

Adding and integrating over the cross section, setting the
perturbed fields equal to the unperturbed fields leads to

639

0

Fig. 1. Perturbed and unperturbed dispersion curves.

If we substitute from (30) and (38), we find that (39) is
satisfied provided

(40)

That this is generally true for a composite waveguide can be
shown from (18) and (19). (See Appendix.)

A f U{4(M€ - uoeo)No + ko[(ae/aw)Eo'Eo* + (au/aw)HoHo*]}dS
w 8

wo

where U, is the volume density of field energy given by

U() = %(EEQ'E()* + ,U.H()'Ho*)‘ (37)
If all media are nondispersive and move with the same
velocity, (36) reduces to

vf (ue — poea) N odS
Aw s

wo
f UddS
8

It is not too difficult to show that (30) and (38) are con-
sistent with (1) and (2). This can be demonstrated in con-
nection with Fig. 1 which shows linearized sections of the
dispersion curves for v=0 and for »£0. For small »/c, the
points A, B, and C, obtained from (30), (38), and (1) and
(2), respectively, must lie on the same straight line. From the
figure, the condition can clearly be written in the form

(38)

k(ﬂ) — Aw

ww/c?

Aw

Ak (39)

(36)

f {4[70 -l' wo[(ae/aw)Eo'Eo* + (au/aw)HoHo*]}dS

IV. SLow WAVES ALONG THE INTERFACE OF A SEMI-
INFINITE PLASMA

As an example of the application of the formulas of
Section IV we shall choose the problem of a surface wave
along the interface of a moving semi-infinite plasma and a
dielectric. This problem has some bearing on recent experi-
ments.™

Tt is well known®! that along the interface of a semi-infinite
plasma and free space, a slow surface wave can propagate
which decays exponentially away from the interface. If the
plasma has a drift velocity v parallel to the interface, the
solution is unaltered in the proper frame of the plasma. The
solution in the observer’s frame can then be obtained simply
by a Lorentz transformation.

When the free space above the plasma is replaced by a
dielectric which is not moving with the plasma, the situation
is not quite as simple. We must use the constitutive relations
for a moving medium whether we work in the proper frame
of the plasma or that of the dielectric. Let us choose the
proper frame of the dielectric as our reference frame. The
interface is taken as the z-y plane and the plasma drifts in
the z direction with velocity v (see Fig. 2). Subscripts 1 and 2
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Fig. 2. Geometry of problem.

will refer to the dielectric and plasma region, respectively.
We shall first obtain a direct solution of the field equations
and then compare the results with those obtained from the
perturbation formulas.

In region 2, we must supplement the source-free Maxwell
equations by the first-order constitutive relations!® (terms
of v2/¢? or A? are neglected here and later on):

Dy = eoEy + A X Ho,
Bg = ,U()Hg —- A X Eg. (41)
If fields vectors are assumed proportional to
eaz:c—!-j(wt—kz) (42)

Maxwell’s equations separate into two independent sets,
corresponding to a TM and a TE wave, respectively,

(k + Aw)H,y = wesEy,
(b + Aw)Ey = — wuoH s,
— JasH 3y = wesFs,

- ja2E2y = = w,‘-LOHZz
(b + Aw)E2p — josks= wuoH sy
(b + Aw)Hy — jasHs = — wesEay  (43)
Both sets will have a nontrivial solution only if
(k + Aw)? = a2 + k2(w/0)? k2 = e/eq. (44)
In the dielectric, we will assume fields of the form
e—a],x-l—j(wt—kz)' (45)

We get a set of equations of the form of (43) except that the
subscripts on the fields are now 1 instead of 2 and «s is re-
placed by —ay. We have a nontrivial solution if

k? = a:® + «i(w/c)? (46)

K1 = 61/60.

The continuity requirements on the tangential components of
E and H lead to the relations!®!

for the TM wave 47

Oy = — (K2/K1)0£1
and

ay = — (uz/u)ar for the TE wave. (48)

These equations can clearly not be satisfied unless one of the
dielectric constants or one of the permeabilities is negative.
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For a plasma, x, will be negative for frequencies below the
plasma frequency, so that a slow TM surface wave is pos-
sible. For ferrites a TE wave may be possible in certain fre-
quency ranges.

For our drifting plasma, we can combine (44), (46), (22),
and (47) to obtain the dispersion relation

Bt — 1) — @han/e)s(ks — 1)
— (w/c)%axa(xs — k1) = 0. (49)

It will be convenient in what follows to introduce the dimen-
sionless variables defined by

B = U/C,
X = w/wm
Y = ke/uw,, (50)

In terms of these symbols, (49) can be written in the form
(k2 —Kk12) Y2— 28X Y1 2(ks— 1) — X 2%k1r2 (ke — k1) = 0. (51)

The dielectric constant of the plasma is given by (16), but
it must be evaluated at the frequency o’ =w—kv. Hence

ke =1— (X —8Y)% (52)
For =0 (8=0) we get the well-known solution®
K1Ka
(ke/wp)? = Yo = X,?
k2 + K1
1 — X¢?
_ 2 e ( %) (53)

S+ )X

A real solution is obtained only at frequencies below the
cutoff frequency given by

Xoo = (1 + x))2/?
or

w/wy = (1 4 x)~12 (54)

We are interested in how the dispersion curve in (53) is
changed when g has a finite positive or negative value. This
is most conveniently expressed in terms of the shift of the
dispersion curve AX in the X-Y plane for a given Y. If we
substitute (52) in (51), multiply through by (X—8Y)* and
then neglect terms of order $? and higher, the dispersion
relation becomes
F(X,Y,B8) = V[l — 2X2% — (k2 — 1)X¢]

— K1X2[1 - (2 - K1)X2 - (K1 - 1)X4]
+ 48X Y { Y21 + (2 — 1X?]

+ X2(1 — XBii(ey — 1} = 0. (55)

Equation (53) gives a zero-order solution to (55). The first-
order change in X for a fixed Y is given by Newton’s rule

F(X, Y, B)
aF/oX

(56)

with
Y = Yo.



GRUENBERG AND DALY: WAVEGUIDES WITH MOVING DISPERSIVE MEDIA

A Semi-~infinite isotropic plasma

'w—p Xy=4 Plasma velocity

Plasma traveling along -ve

Plasma stationary

p=1072

z axis
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Fig. 3. Dispersion curves for TM surface waves on semi-infinite isotropic plasma.

After a considerable amount of algebra, dropping terms of
order 82, we get

AX Aw

,8 Yo B ]C(ﬂ)

(1 + )Xl = X¢t)
1— 2X02 + (Kl + 1)X04

(57)

This equation gives the change in w required to maintain the
same propagation constant, when the drift velocity of the
plasma changes from zero to v.

The ratio given by (57) tends to unity as X approaches the
cutoff value X, or, equivalently, as w tends to w.. This means
that the w—k curve has the asymptote w=w,+kv. This is
shown for zero, positive and negative values of v in Fig. 3
for k1=4.

Equation (37) is plotted in Fig. 4 with «; as a parameter.
The frequency is normalized with respect to the cutoff fre-
quency .. It is secen that Aw approximates kv only near
cutoff when the phase velocity is very small. At lower fre-
quencies Aw/kv tends to zero very rapidly as the phase
velocity approaches the velocity of light.

It is a little more difficult to carry out the calculation for
AY for a fixed X since this difference becomes very large
near cutoff. Away from cutoff, i.e., for low frequencies, a
similar procedure can be used to obtain

F
Y = — (58)
aF/dy

with
Y =Y.

The difference in phase velocity with and without plasma
drift is then given by

o
>

8

-

08 |

06
Wy=o0 Ny=1
04 -

02~

- =W
T Viry
o P TS W TR S ST R W

0 02 04 06 08 10

Fig. 4. Frequency shift versus normalized frequency.

XoAY
v .
BY ¢

(59)

U — Uy =

After some algebra we obtain
2K1X02
]. _ 2X02 - (Klz - 1)X04

u = U+ v (60)
Much below cutoft, when the phase velocity is high, the drag
coefficient multiplying v is negligible and u=~u, for all
practical purposes.

The results given in (57) and (60) can also be obtained
from the perturbation formulas (29) and (36), If we set
pe=po and e;= (1 —w,2/we?) we get

e ]
Vwy - we
0
f { (ko/wo)eoEo- Eo* — 2N0/c:2}dx

2f Nodx

(61)
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and

f" { (ko/wo)eaEo+ Eg* — 2N o/c*}da
- (62

f {[1 ‘|‘ (wp/wo)z]eﬂEO'EO* + MoHo‘Ho*}dx

—c0

When one substitutes for the unperturbed fields Ey and H,,
the preceding expressions reduce to (57) and (60). The un-
perturbed fields can be obtained from Daly or from (43)
by setting A=0.

V. DISCUSSION

It was shown that the relativistic transformation formulas
(1) and (2) for the frequency and wave vector can be used
for nonuniform plane waves in composite waveguides pro-
vided that all moving media making up the guide are non-
dispersive and move with the same velocity. When these
conditions are not fulfilled one must generally obtain the
dispersion relation for the composite guide directly from
Maxwell’s equations and the constitutive relations. If the
dispersion relation is known when all media are stationary,
perturbation formulas may be used to obtain the correspond-
ing relation when all or some of the media making up the
guide are moving and dispersive.

In the experiments reported in Kerzar and Weisglas,®
a drifting plasma was enclosed in a glass tube inside a cylin-
drical waveguide. In the interpretation of the experiments,
the authors set Aw equal to kv for all frequencies. This does
not appear to be justified from the above argument. How-
ever, since the waves are much slower (k is larger) for the
cylindrical waveguide structure of the experiments than for
the simple structure considered here, it is conceivable that
Aw/kv may not be too different from unity even at the
lower frequencies. In any case the frequency shift for the
circular-symmetric mode is too small at these lower fre-
quencies to permit a precise comparison with theory. It
would be interesting to repeat these experiments for higher
drift velocities.

APPENDIX

When the conjugate of (18) is premultiplied by ee, - EyX,
use is made of some vector identities and the terms rear-
ranged, one obtains after integration over the guide cross
section
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f efer By X (Vs X Ei*) — jhoB.E*}dS
8

= jwof ueEy X Hy*-dS — jkgf eEy- Ev*dS. (63)
8 8
Similarly, one obtains from (19)

[ o Hox (VX B = ot 2. a8
N

= jwof ,LLGEQ* X Hods - ]kof ,uHo‘Ho*dS. (64:)
8

When these equations are added, the right-hand side is
equivalent to

4:j {wof MENodS - kof UodS} .
8 8

In order to prove (40) we must show that the left-hand sides
of (63) and (64) vanish identically.

From vector identities, or by expansion in rectangular
components, one can show that

e, Ey X (Vy X Eg*) = — Eo-V,E.*
= Ez*vt'EO - Vt' (EzEO)
= jkol.E.* — V- (H,Ey).

The last identity follows from V-E;=0 which implies
V- Eo—jkoE,=0. If this result is substituted into (63), the
left-hand side becomes

- f th'EondS.
8

Since e is a constant in each subsection S; of S, it can be
taken inside the divergence sign. The integral can therefore
be converted into a contour integral which vanishes over a
metallic boundary or at infinity. A completely analogous
procedure can be used to show that the left-hand side of (64)
is also zero.
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